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Semantic Communication for VR Music Live
Streaming With Rate Splitting

Jiaqi Zou

Abstract—Virtual reality (VR) live streaming has established a
remarkable transformation of music performances that facilitates
a unique interaction between artists and their audiences within
a virtual environment, offering an experience that significantly
surpasses the conventional constraints of live music events. This
article proposes a novel framework for enhancing VR music
live streaming through the integration of semantic commu-
nication and rate splitting. The framework aims to improve
user experience by efficiently transmitting music and speech
components. It utilizes a semantic encoder to separately extract
semantic information for music and speech, to capture the
unique characteristics of music and speech. After having the
extracted feature, we propose a rate-splitting-based algorithm
in the transmission of music and speech to enhance user utility
by designating music as a common message for all users and
speech as a private message targeted to specific users based
on their preferences. Simulation results demonstrate significant
performance gain compared to the baseline methods.

Index Terms—Music live streaming, rate splitting, semantic
communication, virtual reality (VR).

I. INTRODUCTION

N the realm of digital entertainment, virtual reality (VR)

live streaming has been regarded as a groundbreaking in-
novation, offering new possibilities for music performances.
This advanced technological modality facilitates a unique
interaction between artists and their audiences within a vir-
tual environment, offering an experience that significantly
surpasses the conventional constraints of live music events
[1]. VR live streaming enables individuals to partake in the
dynamic ambiance of concerts without the necessity of phys-
ical presence. This technological progression not only chal-
lenges the traditional notions of geographical and spatial
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limitations in live music but also heralds a new era of
accessibility, interactivity, and immersion within the music
industry [2].

In the domain of VR music live streaming, the minimization
of latency is paramount due to its profound impact on user im-
mersion, interactive engagement, audio-visual synchronization,
and user comfort. Latency is crucial for maintaining the illusion
of presence, a core tenet of VR that fosters a convincing sense
of being within the virtual environment [3], [4]. High latency
disrupts this seamless integration, leading to a diminished im-
mersive experience. Thus, ensuring low latency is indispensable
for the overall quality of VR music live streams, affecting not
only the realism and engagement of the virtual experience but
also the comfort and satisfaction of the user, which is one of
the key challenges in delivering interactive VR music events.

In music live streaming, there are primarily two main types
of streams: music as the common content delivered to each
receiver and surrounding speech messages that vary based on
the interactive group. Rate splitting, a technique that divides
a data stream into substreams with different priorities, offers
an effective solution for VR music live streaming. By sep-
arating universal content (e.g., music) from targeted content
(e.g., surrounding speech), it ensures consistent delivery and
minimizes delay [5], [6]. Thus, this article proposes to use rate
splitting to optimize VR live streaming, enhancing immersion,
and interaction by reducing latency for real-time interactions in
VR environments.

Semantic communication, by processing source messages to
extract their semantics and transmitting only relevant informa-
tion, holds the potential to significantly reduce data transmis-
sion while preserving the original semantics, enabling the pro-
vision of the same service quality with lower data transmission
[7]. Semantic communication, which emphasizes the transmis-
sion of meaningful content over raw data, presents a strategic
method for latency reduction in VR music transmission. This
approach, by prioritizing the conveyance of significant musical
and interactive elements, enables a more efficient data trans-
mission process, thereby mitigating bandwidth demands and
facilitating quicker content delivery.

Against this background, this article proposes to utilize se-
mantic communication and rate splitting for VR music live
streaming, where both music and speech are transmitted to
enhance the experience of the users. Specifically, the semantic
information of the music and speech is extracted separately,
taking advantage of the semantic encoder. Then, the semantic
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feature of the music is regarded as the common message that is
transmitted to all users. The speech information is regarded as
a private message that is transmitted to specific users according
to their requirements. The main contributions of this article are
summarized as follows.

1) We introduce a new framework that combines semantic
communication with rate splitting specifically for VR
music live streaming.

2) Our approach involves utilizing semantic communication
to transmit compact semantic information extracted from
the original large-scale data. Furthermore, we employ
two distinct bandwidths to extract semantic features sep-
arately, taking into account the different frequency char-
acteristics of music and speech.

3) Furthermore, we introduce the application of rate split-
ting to the transmission of music and speech, aiming to
enhance the efficiency and quality of data delivery in VR
music live streaming environments.

The remainder of this article is organized as follows.
Section II introduces the related works, including rate splitting
and semantic communication. Section III introduces the sys-
tem model, including the semantic communication lightweight
encodec model and the rate splitting model. The proposed
framework, including the framework overview, the semantic
encoder, the quantizer and decoder, and the precoder optimiza-
tion, is given in Section IV. Numerical results are provided in
Section V. Finally, we conclude the article in Section VI.

Notations: (-)T and (-)* denote the transpose and the conju-
gate transpose of a matrix, separately; || - ||; and || - ||> denote
the L1 norm and L2 norm of a matrix, respectively; Tr(-)
denotes the trace of a square matrix; log,(-) is the base-2 log-
arithm function; C™*™ stands for an m x n complex matrix;
x ~CN (A, A) represents the circularly symmetric complex
Gaussian vector having a mean vector of A and covariance ma-
trix of A; and Re(a) and Im(a) denote the real and imaginary
parts of a complex number a, respectively.

II. RELATED WORKS
A. Rate Splitting

The concept of rate splitting in rate splitting multiple ac-
cess (RSMA) is proposed as a novel, versatile, and robust
framework for designing and optimizing future wireless net-
works’ nonorthogonal transmission, multiple access (MA), and
interference management strategies [8]. RSMA provides a soft
bridge between two extreme interference management strate-
gies: fully decoded interference and interference treated as
noise, by splitting user messages and enabling nonorthogonal
transmission of common messages for multiuser decoding and
private messages for individual user decoding.

RSMA offers a more appealing solution in terms of perfor-
mance and complexity, retaining the benefits of space division
multiple access (SDMA) and nonorthogonal multiple access
(NOMA) while addressing their inherent limitations [9]. RSMA
encompasses SDMA and NOMA as special cases, transitioning
to SDMA if channel strengths are similar and orthogonal and
to NOMA if channels exhibit diverse strengths and alignment.
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The use of RS is influenced by multiuser interference from
imperfect channel state information at the transmitter (CSIT) in
multiantenna deployments [10], [11]. RSMA’s rate performance
surpasses that of SDMA and NOMA, optimally exploiting both
spatial dimensions and CSIT availability, even in scenarios of
perfect or imperfect CSIT [12], [13]. RSMA is robust to in-
accurate channel state information (CSI) and resilient to hybrid
quality of service (QoS) requirements, performing efficiently in
nonorthogonal, misaligned, or similar user channels, regardless
of perfect or imperfect transmitter knowledge of CSI [14].

Previous research has shown the feasibility of supporting
enhanced VR performance using RSMA technology based on
semantic communication. Huong Giang et al. [15] studied the
maximum total rate of downlink RSMA systems, framing the
optimization problem as a Markov decision process and em-
ploying deep reinforcement learning algorithms to handle the
stochastic network environment. In [16], RSMA’s private mes-
sage portion is explored for semantic information transmis-
sion, achieving ultrareliable and low-latency communication
(URLLC). Huang et al. [17] proposed an intelligent reflecting
surface (IRS)-assisted RS VR streaming system, leveraging
users’ common interests in VR streaming, while IRS supports
high-resolution 360-degree video transmission using the deep
deterministic policy gradient with imitation learning (Deep-
GRAIL) algorithm to optimize various parameters.

Improvement schemes of RSMA have also been extensively
studied. The uplink RSMA communication problem aimed at
maximizing the total wireless user rate was investigated in [18],
introducing a user-pair-based algorithm that enables each user
pair to utilize RSMA and allocates orthogonal frequencies to
users in different pairs. Yang et al. [19] proposed a successive
convex approximation algorithm for multiantenna base station
RSMA to obtain suboptimal solutions maximizing the trans-
mission power of common messages. Besides, the resource
allocation problem in a reconfigurable intelligent surface (RIS)-
assisted wireless communication system with RSMA was inves-
tigated in [20], proposing an iterative algorithm to address phase
optimization and beamforming optimization subproblems iter-
atively.

B. Semantic Communication

Yang et al. provide a comprehensive survey on semantic com-
munication in 6G, categorizing it into semantics-oriented, goal-
directed, and semantic-aware communication [21]. Semantic
communication reduces bandwidth usage, enhances reliability,
and meets future network demands for intelligence and simplic-
ity, making it crucial for 6G networks [22]. The advancement
of Al has shown immense potential in wireless communication,
enabling semantic encoding tasks. Researchers use deep learn-
ing models to model semantic features of information sources,
achieving significant results. For text sources, models such as
GPT [23] and BERT [24] excel in natural language process-
ing tasks. Guo et al. proposed a semantic importance-aware
communication (SIAC) scheme using pretrained models such
as ChatGPT and BERT [25]. For image sources, Ren and Wu
introduced an asymmetric semantic communication network
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using a diffusion model for image transmission and recovery,
outperforming GAN-based models [26]. For audio sources, En-
codec, a high-fidelity neural audio compression model, achieves
up to 40.

Recent surveys have addressed different aspects of semantic
communication. Lan et al. presented a machine intelligence se-
mantic communication framework for human-to-human (H2H),
human-to-machine (H2M), and machine-to-machine (M2M)
communication [27]. Qin et al. provided an overview of the
theory, frameworks, system designs, and performance metrics
of semantic communication [28]. Iyer et al. investigated tech-
nological trends in semantic communication in intelligent wire-
less networks, discussing cross-layer interactions, goal-oriented
communication applications, and challenges [29]. Liu et al. re-
viewed semantic communication applications in UAV commu-
nication, remote image perception, intelligent transportation,
and healthcare [30]. Li et al. surveyed technologies such as Al,
spatiotemporal data representation, semantic IoT (SIoT), and
semantic-enhanced digital twins (SDTs), presenting use cases
in the ubiquitous semantic metaverse [31].

Researchers have proposed feasible architectures for seman-
tic communication in edge distributed network architecture. A
metanetwork proposed in [32] can exceed Shannon’s limit by
leveraging multifaceted information and intelligent collabora-
tion among distributed entities. Shi et al. proposed an archi-
tecture based on federated edge intelligence, allowing users to
offload semantic encoding and decoding tasks to edge servers,
supporting resource-efficient semantic-aware networks [33].
The potential technological applications of semantic commu-
nication have been extensively studied. Rezaei et al. developed
software for automatic transmission of semantically segmented
map images via BPSK channels [34]. Chen et al. designed
cross-modal semantic fusion and similarity evaluation methods
for multimodal data transmission [35]. Wu et al. presented
cross-task semantic transfer, a transfer learning approach for
object detection training with limited labels [36]. Tang et al.
proposed combining semantic features from direct and relay
links to estimate information recovery, introducing a metric
for balancing recovery and energy consumption [37]. Sheng
et al. introduced a BERT-based multitext task communication
system [38].

III. SYSTEM MODEL AND PROBLEM FORMULATION

As depicted in Fig. 1, we consider a multiuser VR transmis-
sion system, where the BS equipped with M transmit antennas
serves K single-antenna VR users for communication with
K <M. Let ke K£{1,2,...,K} denote the VR user set.
In the context of live music performances experienced through
VR, the transmission of music is a universal requirement for
all users. Beyond this foundational aspect, the BS additionally
transmits the speech content, encompassing interactions among
users. This latter form of transmission is contingent upon spe-
cific requests by the users, indicating a customized approach to
content delivery based on individual user needs or preferences.
This dual-faceted transmission strategy underscores the impor-
tance of a flexible and responsive communication infrastructure
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Fig. 1. Illustration of a VR music performance live streaming. The base
station transmits both music and speech to multiple users according to
their preferences.

within VR music performance environments, catering both to
the collective experience of music and to the personalized in-
teractive experiences among participants.

A. Semantic Coding Model

In VR music live streaming, semantic communication is
developed for music and speech transmission. Due to distinct
frequency distributions, high-bandwidth and low-bandwidth
compression with a lightweight audio coding model [39] is
utilized, ensuring end-to-end audio signal transmission.

An audio signal of duration d is represented as a sequence
y € [—1, 1]9*T with C representing the number of audio chan-
nels, T'=d - fs for the number of audio samples at a given
sample rate fg.. The lightweight encoder—decoder model is
mainly composed of four components.

1) The encoder module employs a 1-D convolution layer
with C' channels and a kernel size of 7, succeeded by
four 2-D convolution blocks, as shown in Fig. 2. The
residual unit contains two convolutions with a kernel size
of 3 and a skip-connection. Subsequently, the convolution
blocks are followed by a transformer layer for sequence
modeling and one 1-D convolution layer.

2) The quantizer module utilizes residual vector quanti-
zation (RVQ) to quantize the encoder’s output. Vector
quantization involves mapping an input vector to the
nearest entry in a specified-size codebook. RVQ enhances
this process by calculating the residual postquantization,
subsequently subjecting it to further quantization using a
secondary codebook and repeating as necessary.

3) The decoder module mirrors the encoder module, out-
putting the final mono or stereo audio.

4) Balanced loss functions: The reconstruction loss consists
of both time and frequency domain components and the
VQ commitment loss. In the time domain, we minimize
the L1 distance between the target y and compressed
audio g, denoted as

t(y,y) = lly — 9l (1
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Fig. 2. TIllustration of the lightweight end-to-end audio coding model.

Additionally, in the frequency domain, we employ the L2 losses
over the mel-spectrogram, integrating multiple time scales, de-
noted as

Uy 9) = - ISiw) —~ S@) + 1S:() ~ Si@)s @
i€e

where s is normalized parameter, S;(-) is a 64-bins mel-
spectrogram function using a normalized STFT with window
size of 2% and hop length of 2¢/4, e =5,..., 11, is the set of
scales. For each residual stepn € {1, ... N} (with N depending
on the bandwidth target for the current batch), noting z. the cur-
rent residual and ¢.(z.) the nearest entry in the corresponding
codebook, we define VQ commitment loss [,, as

N
lw:ZHzc_QC(Zc)H%' (3)
n=1

Overall, the generator is trained to optimize the following loss,
summed over the batch:

LG:)\t'Et(yag)+/\f'gf(y7@)+>\w'£w “)

where A;, Af, and A, are the scalar coefficients to balance
between the terms.

The entire system undergoes end-to-end training to minimize
a reconstruction loss spanning both the temporal and frequency
domains. Additionally, a VQ commitment loss is incorporated,
operating at varying resolutions. A visual depiction is provided
in Fig. 2 for clarity.

B. RS-Based Downlink Transmission

The music message is encoded into a common stream s,
using a codebook shared by both users. Thus, s. is a common
stream required to be decoded by both users. The speech mes-
sage required by the kth user is encoded into the private stream
sp.k- Hence, the overall data streams to be transmitted based on
RS are s = [s¢, Sp.1, Sp.2, - - -, Sp i) and tr(sfs) =1

The data streams are linearly precoded with the beamforming
matrix W = [w¢, W, 1, Wp2,..., W, k|, where w, is the pre-
coder for the common stream s, and {w,,  }2*_ is the precoder
for the private stream {s, j }#< . Then, the transmitted signal
vector of the BS is given by x = Ws. We denote the channel
from the BS to the kth user as wj, € CM*! and hy, € CMx!,
Then, the received signal at the kth user is given as follows:

K
vk =hiwese + Y hifwes, i + 2 (5)

k=1
where zj; denotes the additive white Gaussian noise (AWGN)
received at the kth user, z; ~ CN(0,0?). The kth user first
decodes the common message by treating the private messages
of all users as interference. The SINR of the common message

at the kth user is given by

b we|?
7 )
Zj:l [hifwy ;? + o2

Then, the achievable rate for the common message at the kth
is given by

Ye,k = (6)

Rc,k: - 10g2(1 + A/c,k)~ (7)

Let R, denotes the transmission rate of the common message.
All users need to decode the common message first and then
remove it from their respective received signal to decode their
private message. To ensure the successful decoding of the com-
mon message for all users, we have the following constraint:

RC = min{Rcﬁl,Rcyz, e 7RC,K}~ (8)

After decoding the common message, user n removes the signal
corresponding to the common message from y;, using SIC and
decodes its private message by treating the private messages
of other users as interference. Thus, the SINR of the private
message at the kth user is given by

Yok = (b Wi |
Pk = 3K :
D il jtk [hifwy ;> + o2

€))
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preferences.

Then, the achievable rate of the private message of the kth user
is given by

Ry i =log,(1 4+ vp.k)- (10)

Following the RS structure described above, the total achievable
rate of the kth user can be represented by

Ry = Rc,k + Rp’k. (11)

Considering the different preferment of the users, we define the
utility of the users as uy, which can be given by

U, = fhe e Re e + tp e Rp k- (12)
C. Problem Formulation

Based on the discussion above, the problem can be formu-
lated as follows:

K
1

rr&x;uk (13a)

s.t. || W% < Prax (13b)

RC zmin{Rc,l,Rc@?...,Rc’K} (130)

R:> Rewm (13d)

Ry k> R g, Vk € K. (13e)

Our objective is to maximize the aggregate utility of all users,
as given in the objective function. Equation (13b) specifies the
power limitation, with P, representing the overall budget for
transmission power. Equation (13d) outlines the requirement for
the transmission of common messages to ensure the fidelity of
music transmission, wherein IRy, signifies the threshold rate
for such common messages. Similarly, (13e) establishes the
criteria for the transmission of private messages, a requirement
aimed at preserving the quality of speech transmission, with
R,x indicating the threshold rate for the private message for
the kth user.

Ilustration of a VR music performance live streaming. The base station transmits both music and speech to multiple users according to their

IV. PROBLEM SOLUTION
A. Framework Overview

As shown in Fig. 3, we propose a novel framework for
music performance live streaming, aiming at optimizing the
transmission of audio content, including music and speech, in
live streaming scenarios over wireless channels. This frame-
work integrates semantic encoding techniques for music data
with conventional encoding approaches for speech data, thereby
enhancing the efficiency of channel utilization and ensuring the
integrity of the transmitted content.

Specifically, the framework receives two distinct streams
of data, i.e., music stream and speech stream. These streams
are then processed through dedicated pathways: the semantic
encoder for music, which is designed to capture and encode
the essential semantic features of the musical content, and the
speech encoder for speech, focusing on preserving the intelli-
gibility and clarity of verbal communication. This bifurcated
initial processing stage is crucial for preparing the disparate
types of data for efficient transmission.

Subsequently, the encoded outputs are transmitted by rate
splitting, which designates music as a common message for
all users and speech as a private message targeted to specific
users based on their preferences. This is predicated on the dif-
ferentiation of data based on its relative importance and utility
to the end-user, thereby optimizing the allocation of channel
resources.

At the receiver side, the data stream is handled by two parallel
decoding pathways. The semantic decoder is specifically tasked
with reconstructing the music data by focusing on its semantic
elements, ensuring that the essential qualities of the music are
accurately reproduced. In parallel, the speech decoder is dedi-
cated to the restoration of the speech data to its original form,
emphasizing clarity and comprehensibility.

The final stage merges the decoded music and speech, which
recombines the outputs from the semantic and speech decoders
into two separate streams, one for music and another for speech.
These streams are then presented to the listener, completing the
transmission process.
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Overall, the framework highlights the synergy between se-
mantic processing and traditional encoding/decoding method-
ologies, significantly enhancing the live streaming experience
for music and speech over wireless channels. It underscores the
necessity for data-type specific processing—semantic encod-
ing for music and conventional encoding for speech—and the
strategic employment of rate splitting to maximize the effec-
tive use of limited channel resources. This approach not only
optimizes bandwidth usage but also ensures the high fidelity of
audio content delivered to end-users in live streaming applica-
tions.

B. Semantic Encoder and Decoder

The encoder of the lightweight encodec model is charac-
terized by a stream-based architecture utilizing 1-D convolu-
tions, tasked with converting the input audio signal into a latent
representation. Segments of the audio signal are sampled to
generate the sequence y, which is then fed into the encoder
as a 1-D vector. Initially, there is a 1-D convolutional layer
with either 1 or 2 channels (depending on whether the audio
is mono or stereo) and a convolutional kernel size of 7, fol-
lowed by four convolutional blocks. Each convolutional block
comprises a residual unit and a downsampling layer, where the
residual unit consists of two convolutional layers with a kernel
size of 3 and a skip connection. The downsampling layer is
a convolutional layer with a stride of 2 and a kernel size of
4. With each downsampling operation, the number of channels
is doubled to maintain the width of the feature maps. Follow-
ing the convolutional blocks is a simple Transformer network
employed for sequence modeling of the latent representation,
capable of capturing long-term dependencies in the audio signal
crucial for compression quality. The output of the encoder is a
latent representation utilized for subsequent quantization and
decoding processes.

The decoder segment, likewise stream-based, employs a 1-D
transposed convolutional network structure and is responsible
for reconstructing the encoder’s output latent representation into
a time-domain signal. The decoder receives the compressed
latent representation from the encoder as input, utilizing trans-
posed convolutional layers. The stride of the transposed con-
volutional layers matches that of the encoder but in reverse
order. This allows the decoder to progressively recover high-
resolution audio signals from low-resolution latent represen-
tations. The decoder outputs the final mono or stereo audio
signal y, with separate processing for left and right channels
in the case of stereo audio. The design of the decoder enables
it to effectively recover high-quality audio signals from the
encoder’s compressed representations.

C. Precoder Optimization

After having the encoded information by the semantic en-
coder, we utilize rate splitting for multiuser VR streaming sys-
tems. Due to the fractional property of the multiratio terms 7. x
and v, 1, R. ;. and R, ;. are still nonconcave functions of wy,. To
tackle such nonconvexity, quadratic transform [40, Theorem 1]
and convex approximation approach are applied. We propose to
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Algorithm 1: Proposed Iterative Algorithm for Handling (13).
Require: h, K, M, o>
Ensure: W*.

1: Initialize h, K, M, 02, W),

2: while not converged do

hHw('m)l
3: Update z¥ . «+ [y < — .
oM T WP
by w7 |
. * K
4: Update z, ,,, < 2

SIS e I W, P

5: W ()  Update W™ by solving problem (17).
6: m<—m+ 1.

7: end while

8

. return W* = W(m+1)

seek a linear surrogate function for the convex quadratic terms
R and R, by employing the first-order Taylor expansion

of |h/w,, ;| at the current point WI(:,? which is a global lower

bound

(hk Wp,k) (h,ﬁlwp,k)

>R ( (m))Hhh (( (m))Hh hi (m))

> kg Wp Wo k R Wy k)
(14)

‘thWp k|

Therefore, plugging the result of (14) into (12), a surrogate
function for u;, is constructed as

up > ,l[k(m) A /ULC_,kR( + g R(m)

(m )) (7"))

= e, k10g (1475 3") + pplogy (147,

= fic,klog, (1 +z'|hfw,| —z:%0°
K
— 22 Re (Z Tr((hehf w!")H 2w, ; — ng’j%)))))
j=1
2

+ tip klog, (1 + Z;|thWp‘ - Z;ZU

K
—z:;zRe( S Tr((hhfwl)H <2wp,j—wé’,’;)>>>>

J=1j#k
15)
where z7,, and z;, are the auxiliary variables, which
can be, respectively, updated by z}, = (|hfw m)y

Z < |hH _)‘2 +0?) and Z = (|hH (m)|/z —l,g;ékl
h,? (m)|2 +cr 2). The surrogate function 3™ (W) is
globally concave with respect to W which permits a premium
solution for (13a). The optimization problems can be
transformed into

max A (16a)
{Wk}k 1 =1
st (13b), (13¢), (13d). (16b)

The proposed algorithm is shown in Algorithm 1.
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V. NUMERICAL RESULTS
A. Experiment Setup

1) Dataset: The model is trained on 24-kHz monophonic
data across various domains, including speech, noisy speech,
and music, whereas the fullband stereo model is exclusively
trained on 48-kHz music. Speech segments from DNS chal-
lenge 4 and FSD50K are utilized for speech training. For music
training and evaluation, the Jamendo dataset is employed, sup-
plemented by an in-house proprietary music dataset for further
evaluation. Dataset splits are established as follows: 90% of
clean segments from DNS challenge 4 are allocated for training,
with 5% each for validation and testing. A similar approach is
applied to FSD50K, utilizing the development set for training
and dividing the evaluation set for validation and testing pur-
poses.

2) Parameter Setting: We train all models for ten epochs,
with one epoch consisting of more than 2000 updates using
the Adam optimizer with a batch size of 32 examples, each of
1-s duration. The learning rate is set to 2 x 10~*, with 6, =0.5
and 3, =0.9. All models are trained on four GeForce RTX
4080 GPUs. We utilize the balancer introduced before, with
weights Ay = 0.5, A\ =1, and A\, = 1 for the 24-kHz models,
and Ay = 0.5, A\ =1, and A\, = 2 for the 48-kHz models.

B. Results

We start with the results for lightweight encodec model with
a bandwidth of 6 kbps, ensuring little loss of the compression
performance. The results of communication optimizing sum
utility rate and semantic lightweight encodec model are shown
as follows.

In Fig. 4, the performance comparison clearly demonstrates
that RSMA consistently outperforms the baseline methods ZF
and NOMA in terms of sum utility rate across various levels
of maximum transmission power. RSMA achieves significant

M =8, M = 10.

rate gains due to its flexible power and resource allocation
strategies, effectively leveraging transmission power to enhance
overall transmission rates. This flexibility also extends to the
design of semantic information extraction schemes, reducing
computational complexity while maintaining robustness and
adaptability under varying transmission conditions. Addition-
ally, RSMA’s integrated encoding and decoding strategies im-
prove spectral efficiency without increasing system complexity,
making it a promising technology for high-efficiency semantic
communication in future 6G networks.

Fig. 5 illustrates that the proposed algorithm achieves con-
vergence within a few iterations. Specifically, the algorithm
generally begins to converge by the fifth iteration and fully
converges within ten iterations under the given parameters.
Additionally, the figure shows that increasing the number of
transmitting antennas M leads to an enhancement in commu-
nication performance, as evidenced by the higher sum utility
rates achieved with larger values of M. This indicates that the
algorithm not only converges efficiently but also scales well
with the number of antennas, offering improved performance
and making it suitable for systems requiring rapid convergence
and high efficiency.

Fig. 6 demonstrates the sum utility rate achieved by the
proposed algorithm under varying transmission power budgets.
As observed, increasing the maximum transmission power Ppax
results in a corresponding improvement in the sum utility rate
for all configurations of transmitting antennas M . Specifically,
higher transmission power consistently enhances communica-
tion performance, with the sum utility rate rising steadily as
Prax increases from 15 to 35 dBm. Additionally, the figure
indicates that configurations with a greater number of transmit-
ting antennas (i.e., M =6, M =8, and M = 10) consistently
outperform those with fewer antennas (i.e., M = 4), highlight-
ing the benefits of utilizing more antennas in achieving higher
utility rates.
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Fig. 7. Training process of L versus iteration on training set.

Fig. 7 depicts the loss function L throughout the train-
ing procedure utilizing multiple NVIDIA GeForce RTX 4080
GPUs. Following approximately 20000 iterations, the loss
function L ultimately achieves convergence, indicating the
effectiveness of the training strategy. To expedite the conver-
gence process, we incorporate a warm-up initialization at the
commencement of each epoch, which serves to stabilize the ini-
tial training iterations and facilitate a smoother descent toward
the optimal solution. This approach ensures that the model is
well conditioned for further optimization, ultimately leading to
improved performance.

Figs. 8 and 9 display the average mean squared error (MSE)
and mean absolute error (MAE) losses across mel-frequency
and time sequences derived from 100 h of data sourced from the
FSD50k dataset at varying bandwidth sampling rates. Opting
for a smaller bandwidth notably enhances the compression ef-
ficacy of the model, albeit at the expense of diminished quality.
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Specifically, at a bandwidth of 1.5 kbps, the model achieves a
compression ratio of 5%, yet at the cost of noticeable audio
information loss, resulting in perceptible differences between
the decoded and original audio. Conversely, at a bandwidth
of 6 kbps, the compression ratio reaches 40%, rendering the
compressed audio nearly indistinguishable from the original in
human auditory assessments. A bandwidth of 12 kbps facil-
itates lossless transmission but fails to effectively reduce file
size. These findings underscore the merits of semantic commu-
nication, which delivers robust compression capabilities with
minimal loss of music or speech information.

Fig. 10 comprehensively showcases the robust performance
of the semantic communication model across three distinct
datasets, each comprising 50 h of audio data. Specifically, the
MSE and MAE metrics for DNS challenge 4, FSD50K, and
Jamendo are presented. Among these, DNS challenge 4 exhibits
a MSE and MAE of 0.08, indicating a consistent yet slightly
higher error rate. The FSD50K dataset, on the other hand,
achieves a lower MSE of 0.07 and MAE of 0.06, suggesting
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improved accuracy. Notably, the Jamendo dataset stands out
with the lowest MSE of 0.05 and MAE of 0.04, demonstrat-
ing the superior performance of the semantic communication
model on this particular dataset. These findings underscore the
generalizability and adaptability of the proposed model across
diverse audio datasets.

In summary, to transmit public information (music), a band-
width of 12 kbps is employed for compression to uphold the
quality standards of the public content. For private information
(speech), a bandwidth of 6 kbps is utilized to optimize compres-
sion efficiency while preserving fundamental speech quality.
Users with lower quality demands for speech information may
opt for compression at 3 kbps or even 1.5-kbps bandwidth.

VI. CONCLUSION

In conclusion, this study has successfully developed and in-
troduced a cutting-edge framework that significantly enhances
the VR music live streaming experience by integrating semantic
communication with rate splitting. This innovative approach
efficiently transmits music and speech components, utilizing a
semantic encoder to distinguish between common and private
messages for users, based on their unique preferences. Key
achievements of our research include the creation of a frame-
work that uniquely combines semantic communication and rate
splitting for VR applications, the effective use of semantic
communication to process and transmit streamlined semantic
information, and the strategic implementation of rate splitting
to optimize the delivery of music and speech. These contribu-
tions collectively address critical challenges in streaming high-
quality VR content and pave the way for more immersive and
enjoyable live streaming experiences.

Looking ahead, there are numerous exciting directions for
future research. One potential area is to further explore the inte-
gration of advanced semantic analysis techniques to enable even
more personalized and context-aware VR music live streaming
experiences. Additionally, we plan to investigate the application
of our framework to other VR scenarios, such as immersive

concerts, virtual events, and educational simulations. Moreover,
with the increasing popularity of 5G and beyond networks, we
believe that our approach can play a crucial role in enabling
real-time, high-quality VR content streaming, opening up new
possibilities for more immersive and enjoyable live streaming
experiences. We are excited about the prospects of our research
and look forward to exploring these future directions.
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