
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 1

Semantic Communication for VR Music Live

Streaming With Rate Splitting
Jiaqi Zou , Graduate Student Member, IEEE, Lvxin Xu , and Songlin Sun , Senior Member, IEEE

Abstract—Virtual reality (VR) live streaming has established a
remarkable transformation of music performances that facilitates
a unique interaction between artists and their audiences within
a virtual environment, offering an experience that significantly
surpasses the conventional constraints of live music events. This
article proposes a novel framework for enhancing VR music
live streaming through the integration of semantic commu-
nication and rate splitting. The framework aims to improve
user experience by efficiently transmitting music and speech
components. It utilizes a semantic encoder to separately extract
semantic information for music and speech, to capture the
unique characteristics of music and speech. After having the
extracted feature, we propose a rate-splitting-based algorithm
in the transmission of music and speech to enhance user utility
by designating music as a common message for all users and
speech as a private message targeted to specific users based
on their preferences. Simulation results demonstrate significant
performance gain compared to the baseline methods.

Index Terms—Music live streaming, rate splitting, semantic
communication, virtual reality (VR).

I. INTRODUCTION

I
N the realm of digital entertainment, virtual reality (VR)

live streaming has been regarded as a groundbreaking in-

novation, offering new possibilities for music performances.

This advanced technological modality facilitates a unique

interaction between artists and their audiences within a vir-

tual environment, offering an experience that significantly

surpasses the conventional constraints of live music events

[1]. VR live streaming enables individuals to partake in the

dynamic ambiance of concerts without the necessity of phys-

ical presence. This technological progression not only chal-

lenges the traditional notions of geographical and spatial
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limitations in live music but also heralds a new era of

accessibility, interactivity, and immersion within the music

industry [2].

In the domain of VR music live streaming, the minimization

of latency is paramount due to its profound impact on user im-

mersion, interactive engagement, audio-visual synchronization,

and user comfort. Latency is crucial for maintaining the illusion

of presence, a core tenet of VR that fosters a convincing sense

of being within the virtual environment [3], [4]. High latency

disrupts this seamless integration, leading to a diminished im-

mersive experience. Thus, ensuring low latency is indispensable

for the overall quality of VR music live streams, affecting not

only the realism and engagement of the virtual experience but

also the comfort and satisfaction of the user, which is one of

the key challenges in delivering interactive VR music events.

In music live streaming, there are primarily two main types

of streams: music as the common content delivered to each

receiver and surrounding speech messages that vary based on

the interactive group. Rate splitting, a technique that divides

a data stream into substreams with different priorities, offers

an effective solution for VR music live streaming. By sep-

arating universal content (e.g., music) from targeted content

(e.g., surrounding speech), it ensures consistent delivery and

minimizes delay [5], [6]. Thus, this article proposes to use rate

splitting to optimize VR live streaming, enhancing immersion,

and interaction by reducing latency for real-time interactions in

VR environments.

Semantic communication, by processing source messages to

extract their semantics and transmitting only relevant informa-

tion, holds the potential to significantly reduce data transmis-

sion while preserving the original semantics, enabling the pro-

vision of the same service quality with lower data transmission

[7]. Semantic communication, which emphasizes the transmis-

sion of meaningful content over raw data, presents a strategic

method for latency reduction in VR music transmission. This

approach, by prioritizing the conveyance of significant musical

and interactive elements, enables a more efficient data trans-

mission process, thereby mitigating bandwidth demands and

facilitating quicker content delivery.

Against this background, this article proposes to utilize se-

mantic communication and rate splitting for VR music live

streaming, where both music and speech are transmitted to

enhance the experience of the users. Specifically, the semantic

information of the music and speech is extracted separately,

taking advantage of the semantic encoder. Then, the semantic
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feature of the music is regarded as the common message that is

transmitted to all users. The speech information is regarded as

a private message that is transmitted to specific users according

to their requirements. The main contributions of this article are

summarized as follows.

1) We introduce a new framework that combines semantic

communication with rate splitting specifically for VR

music live streaming.

2) Our approach involves utilizing semantic communication

to transmit compact semantic information extracted from

the original large-scale data. Furthermore, we employ

two distinct bandwidths to extract semantic features sep-

arately, taking into account the different frequency char-

acteristics of music and speech.

3) Furthermore, we introduce the application of rate split-

ting to the transmission of music and speech, aiming to

enhance the efficiency and quality of data delivery in VR

music live streaming environments.

The remainder of this article is organized as follows.

Section II introduces the related works, including rate splitting

and semantic communication. Section III introduces the sys-

tem model, including the semantic communication lightweight

encodec model and the rate splitting model. The proposed

framework, including the framework overview, the semantic

encoder, the quantizer and decoder, and the precoder optimiza-

tion, is given in Section IV. Numerical results are provided in

Section V. Finally, we conclude the article in Section VI.

Notations: (·)T and (·)H denote the transpose and the conju-

gate transpose of a matrix, separately; ‖ · ‖1 and ‖ · ‖2 denote

the L1 norm and L2 norm of a matrix, respectively; Tr(·)
denotes the trace of a square matrix; log2(·) is the base-2 log-

arithm function; Cm×n stands for an m× n complex matrix;

x∼ CN (Λ,∆) represents the circularly symmetric complex

Gaussian vector having a mean vector of Λ and covariance ma-

trix of ∆; and Re(a) and Im(a) denote the real and imaginary

parts of a complex number a, respectively.

II. RELATED WORKS

A. Rate Splitting

The concept of rate splitting in rate splitting multiple ac-

cess (RSMA) is proposed as a novel, versatile, and robust

framework for designing and optimizing future wireless net-

works’ nonorthogonal transmission, multiple access (MA), and

interference management strategies [8]. RSMA provides a soft

bridge between two extreme interference management strate-

gies: fully decoded interference and interference treated as

noise, by splitting user messages and enabling nonorthogonal

transmission of common messages for multiuser decoding and

private messages for individual user decoding.

RSMA offers a more appealing solution in terms of perfor-

mance and complexity, retaining the benefits of space division

multiple access (SDMA) and nonorthogonal multiple access

(NOMA) while addressing their inherent limitations [9]. RSMA

encompasses SDMA and NOMA as special cases, transitioning

to SDMA if channel strengths are similar and orthogonal and

to NOMA if channels exhibit diverse strengths and alignment.

The use of RS is influenced by multiuser interference from

imperfect channel state information at the transmitter (CSIT) in

multiantenna deployments [10], [11]. RSMA’s rate performance

surpasses that of SDMA and NOMA, optimally exploiting both

spatial dimensions and CSIT availability, even in scenarios of

perfect or imperfect CSIT [12], [13]. RSMA is robust to in-

accurate channel state information (CSI) and resilient to hybrid

quality of service (QoS) requirements, performing efficiently in

nonorthogonal, misaligned, or similar user channels, regardless

of perfect or imperfect transmitter knowledge of CSI [14].

Previous research has shown the feasibility of supporting

enhanced VR performance using RSMA technology based on

semantic communication. Huong Giang et al. [15] studied the

maximum total rate of downlink RSMA systems, framing the

optimization problem as a Markov decision process and em-

ploying deep reinforcement learning algorithms to handle the

stochastic network environment. In [16], RSMA’s private mes-

sage portion is explored for semantic information transmis-

sion, achieving ultrareliable and low-latency communication

(URLLC). Huang et al. [17] proposed an intelligent reflecting

surface (IRS)-assisted RS VR streaming system, leveraging

users’ common interests in VR streaming, while IRS supports

high-resolution 360-degree video transmission using the deep

deterministic policy gradient with imitation learning (Deep-

GRAIL) algorithm to optimize various parameters.

Improvement schemes of RSMA have also been extensively

studied. The uplink RSMA communication problem aimed at

maximizing the total wireless user rate was investigated in [18],

introducing a user-pair-based algorithm that enables each user

pair to utilize RSMA and allocates orthogonal frequencies to

users in different pairs. Yang et al. [19] proposed a successive

convex approximation algorithm for multiantenna base station

RSMA to obtain suboptimal solutions maximizing the trans-

mission power of common messages. Besides, the resource

allocation problem in a reconfigurable intelligent surface (RIS)-

assisted wireless communication system with RSMA was inves-

tigated in [20], proposing an iterative algorithm to address phase

optimization and beamforming optimization subproblems iter-

atively.

B. Semantic Communication

Yang et al. provide a comprehensive survey on semantic com-

munication in 6G, categorizing it into semantics-oriented, goal-

directed, and semantic-aware communication [21]. Semantic

communication reduces bandwidth usage, enhances reliability,

and meets future network demands for intelligence and simplic-

ity, making it crucial for 6G networks [22]. The advancement

of AI has shown immense potential in wireless communication,

enabling semantic encoding tasks. Researchers use deep learn-

ing models to model semantic features of information sources,

achieving significant results. For text sources, models such as

GPT [23] and BERT [24] excel in natural language process-

ing tasks. Guo et al. proposed a semantic importance-aware

communication (SIAC) scheme using pretrained models such

as ChatGPT and BERT [25]. For image sources, Ren and Wu

introduced an asymmetric semantic communication network

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on February 05,2025 at 03:51:19 UTC from IEEE Xplore.  Restrictions apply. 



ZOU et al.: SEMANTIC COMMUNICATION FOR VR MUSIC LIVE STREAMING WITH RATE SPLITTING 3

using a diffusion model for image transmission and recovery,

outperforming GAN-based models [26]. For audio sources, En-

codec, a high-fidelity neural audio compression model, achieves

up to 40.

Recent surveys have addressed different aspects of semantic

communication. Lan et al. presented a machine intelligence se-

mantic communication framework for human-to-human (H2H),

human-to-machine (H2M), and machine-to-machine (M2M)

communication [27]. Qin et al. provided an overview of the

theory, frameworks, system designs, and performance metrics

of semantic communication [28]. Iyer et al. investigated tech-

nological trends in semantic communication in intelligent wire-

less networks, discussing cross-layer interactions, goal-oriented

communication applications, and challenges [29]. Liu et al. re-

viewed semantic communication applications in UAV commu-

nication, remote image perception, intelligent transportation,

and healthcare [30]. Li et al. surveyed technologies such as AI,

spatiotemporal data representation, semantic IoT (SIoT), and

semantic-enhanced digital twins (SDTs), presenting use cases

in the ubiquitous semantic metaverse [31].

Researchers have proposed feasible architectures for seman-

tic communication in edge distributed network architecture. A

metanetwork proposed in [32] can exceed Shannon’s limit by

leveraging multifaceted information and intelligent collabora-

tion among distributed entities. Shi et al. proposed an archi-

tecture based on federated edge intelligence, allowing users to

offload semantic encoding and decoding tasks to edge servers,

supporting resource-efficient semantic-aware networks [33].

The potential technological applications of semantic commu-

nication have been extensively studied. Rezaei et al. developed

software for automatic transmission of semantically segmented

map images via BPSK channels [34]. Chen et al. designed

cross-modal semantic fusion and similarity evaluation methods

for multimodal data transmission [35]. Wu et al. presented

cross-task semantic transfer, a transfer learning approach for

object detection training with limited labels [36]. Tang et al.

proposed combining semantic features from direct and relay

links to estimate information recovery, introducing a metric

for balancing recovery and energy consumption [37]. Sheng

et al. introduced a BERT-based multitext task communication

system [38].

III. SYSTEM MODEL AND PROBLEM FORMULATION

As depicted in Fig. 1, we consider a multiuser VR transmis-

sion system, where the BS equipped with M transmit antennas

serves K single-antenna VR users for communication with

K ≤M . Let k ∈ K , {1, 2, . . . ,K} denote the VR user set.

In the context of live music performances experienced through

VR, the transmission of music is a universal requirement for

all users. Beyond this foundational aspect, the BS additionally

transmits the speech content, encompassing interactions among

users. This latter form of transmission is contingent upon spe-

cific requests by the users, indicating a customized approach to

content delivery based on individual user needs or preferences.

This dual-faceted transmission strategy underscores the impor-

tance of a flexible and responsive communication infrastructure

Fig. 1. Illustration of a VR music performance live streaming. The base
station transmits both music and speech to multiple users according to
their preferences.

within VR music performance environments, catering both to

the collective experience of music and to the personalized in-

teractive experiences among participants.

A. Semantic Coding Model

In VR music live streaming, semantic communication is

developed for music and speech transmission. Due to distinct

frequency distributions, high-bandwidth and low-bandwidth

compression with a lightweight audio coding model [39] is

utilized, ensuring end-to-end audio signal transmission.

An audio signal of duration d is represented as a sequence

y ∈ [−1, 1]C×T with C representing the number of audio chan-

nels, T = d · fsr for the number of audio samples at a given

sample rate fsr. The lightweight encoder–decoder model is

mainly composed of four components.

1) The encoder module employs a 1-D convolution layer

with C channels and a kernel size of 7, succeeded by

four 2-D convolution blocks, as shown in Fig. 2. The

residual unit contains two convolutions with a kernel size

of 3 and a skip-connection. Subsequently, the convolution

blocks are followed by a transformer layer for sequence

modeling and one 1-D convolution layer.

2) The quantizer module utilizes residual vector quanti-

zation (RVQ) to quantize the encoder’s output. Vector

quantization involves mapping an input vector to the

nearest entry in a specified-size codebook. RVQ enhances

this process by calculating the residual postquantization,

subsequently subjecting it to further quantization using a

secondary codebook and repeating as necessary.

3) The decoder module mirrors the encoder module, out-

putting the final mono or stereo audio.

4) Balanced loss functions: The reconstruction loss consists

of both time and frequency domain components and the

VQ commitment loss. In the time domain, we minimize

the L1 distance between the target y and compressed

audio ŷ, denoted as

ℓt(y, ŷ) = ‖y − ŷ‖1. (1)
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Fig. 2. Illustration of the lightweight end-to-end audio coding model.

Additionally, in the frequency domain, we employ the L2 losses

over the mel-spectrogram, integrating multiple time scales, de-

noted as

ℓf (y, ŷ) =
1

s

∑

i∈e

‖Si(y)− Si(ŷ)‖1 + ‖Si(y)− Si(ŷ)‖2 (2)

where s is normalized parameter, Si(·) is a 64-bins mel-

spectrogram function using a normalized STFT with window

size of 2i and hop length of 2i/4, e= 5, . . . , 11, is the set of

scales. For each residual step n ∈ {1, . . . N} (withN depending

on the bandwidth target for the current batch), noting zc the cur-

rent residual and qc(zc) the nearest entry in the corresponding

codebook, we define VQ commitment loss lw as

lw =
N
∑

n=1

‖zc − qc(zc)‖
2
2. (3)

Overall, the generator is trained to optimize the following loss,

summed over the batch:

LG = λt · ℓt(y, ŷ) + λf · ℓf (y, ŷ) + λw · ℓw (4)

where λt, λf , and λw are the scalar coefficients to balance

between the terms.

The entire system undergoes end-to-end training to minimize

a reconstruction loss spanning both the temporal and frequency

domains. Additionally, a VQ commitment loss is incorporated,

operating at varying resolutions. A visual depiction is provided

in Fig. 2 for clarity.

B. RS-Based Downlink Transmission

The music message is encoded into a common stream sc
using a codebook shared by both users. Thus, sc is a common

stream required to be decoded by both users. The speech mes-

sage required by the kth user is encoded into the private stream

sp,k. Hence, the overall data streams to be transmitted based on

RS are s= [sc, sp,1, sp,2, . . . , sp,K ] and tr(sHs) = I.

The data streams are linearly precoded with the beamforming

matrix W = [wc,wp,1,wp,2, . . . ,wp,K ], where wc is the pre-

coder for the common stream sc and {wp,k}Kk=1 is the precoder

for the private stream {sp,k}
K
k=1. Then, the transmitted signal

vector of the BS is given by x=Ws. We denote the channel

from the BS to the kth user as wk ∈ C
M×1 and hk ∈ C

M×1.

Then, the received signal at the kth user is given as follows:

yk = h
H
k wcsc +

K
∑

k=1

h
H
k wksp,k + zk (5)

where zk denotes the additive white Gaussian noise (AWGN)

received at the kth user, zk ∼ CN (0, σ2). The kth user first

decodes the common message by treating the private messages

of all users as interference. The SINR of the common message

at the kth user is given by

γc,k =
|hH

k wc|2
∑K

j=1 |h
H
k wp,j |2 + σ2

. (6)

Then, the achievable rate for the common message at the kth

is given by

Rc,k = log2(1 + γc,k). (7)

Let Rc denotes the transmission rate of the common message.

All users need to decode the common message first and then

remove it from their respective received signal to decode their

private message. To ensure the successful decoding of the com-

mon message for all users, we have the following constraint:

Rc = min{Rc,1, Rc,2, . . . , Rc,K}. (8)

After decoding the common message, user n removes the signal

corresponding to the common message from yk using SIC and

decodes its private message by treating the private messages

of other users as interference. Thus, the SINR of the private

message at the kth user is given by

γp,k =
|hH

k wp,k|2
∑K

j=1,j 6=k |h
H
k wp,j |2 + σ2

. (9)
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Fig. 3. Illustration of a VR music performance live streaming. The base station transmits both music and speech to multiple users according to their
preferences.

Then, the achievable rate of the private message of the kth user

is given by

Rp,k = log2(1 + γp,k). (10)

Following the RS structure described above, the total achievable

rate of the kth user can be represented by

Rk =Rc,k +Rp,k. (11)

Considering the different preferment of the users, we define the

utility of the users as uk, which can be given by

uk = µc,kRc,k + µp,kRp,k. (12)

C. Problem Formulation

Based on the discussion above, the problem can be formu-

lated as follows:

max
W

K
∑

k=1

uk (13a)

s.t. ‖W‖2
F ≤ Pmax (13b)

Rc = min{Rc,1, Rc,2, . . . , Rc,K} (13c)

Rc ≥Rc,th (13d)

Rp,k ≥Rth,k, ∀k ∈K. (13e)

Our objective is to maximize the aggregate utility of all users,

as given in the objective function. Equation (13b) specifies the

power limitation, with Pmax representing the overall budget for

transmission power. Equation (13d) outlines the requirement for

the transmission of common messages to ensure the fidelity of

music transmission, wherein Rc,th signifies the threshold rate

for such common messages. Similarly, (13e) establishes the

criteria for the transmission of private messages, a requirement

aimed at preserving the quality of speech transmission, with

Rth,k indicating the threshold rate for the private message for

the kth user.

IV. PROBLEM SOLUTION

A. Framework Overview

As shown in Fig. 3, we propose a novel framework for

music performance live streaming, aiming at optimizing the

transmission of audio content, including music and speech, in

live streaming scenarios over wireless channels. This frame-

work integrates semantic encoding techniques for music data

with conventional encoding approaches for speech data, thereby

enhancing the efficiency of channel utilization and ensuring the

integrity of the transmitted content.

Specifically, the framework receives two distinct streams

of data, i.e., music stream and speech stream. These streams

are then processed through dedicated pathways: the semantic

encoder for music, which is designed to capture and encode

the essential semantic features of the musical content, and the

speech encoder for speech, focusing on preserving the intelli-

gibility and clarity of verbal communication. This bifurcated

initial processing stage is crucial for preparing the disparate

types of data for efficient transmission.

Subsequently, the encoded outputs are transmitted by rate

splitting, which designates music as a common message for

all users and speech as a private message targeted to specific

users based on their preferences. This is predicated on the dif-

ferentiation of data based on its relative importance and utility

to the end-user, thereby optimizing the allocation of channel

resources.

At the receiver side, the data stream is handled by two parallel

decoding pathways. The semantic decoder is specifically tasked

with reconstructing the music data by focusing on its semantic

elements, ensuring that the essential qualities of the music are

accurately reproduced. In parallel, the speech decoder is dedi-

cated to the restoration of the speech data to its original form,

emphasizing clarity and comprehensibility.

The final stage merges the decoded music and speech, which

recombines the outputs from the semantic and speech decoders

into two separate streams, one for music and another for speech.

These streams are then presented to the listener, completing the

transmission process.
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Overall, the framework highlights the synergy between se-

mantic processing and traditional encoding/decoding method-

ologies, significantly enhancing the live streaming experience

for music and speech over wireless channels. It underscores the

necessity for data-type specific processing—semantic encod-

ing for music and conventional encoding for speech—and the

strategic employment of rate splitting to maximize the effec-

tive use of limited channel resources. This approach not only

optimizes bandwidth usage but also ensures the high fidelity of

audio content delivered to end-users in live streaming applica-

tions.

B. Semantic Encoder and Decoder

The encoder of the lightweight encodec model is charac-

terized by a stream-based architecture utilizing 1-D convolu-

tions, tasked with converting the input audio signal into a latent

representation. Segments of the audio signal are sampled to

generate the sequence y, which is then fed into the encoder

as a 1-D vector. Initially, there is a 1-D convolutional layer

with either 1 or 2 channels (depending on whether the audio

is mono or stereo) and a convolutional kernel size of 7, fol-

lowed by four convolutional blocks. Each convolutional block

comprises a residual unit and a downsampling layer, where the

residual unit consists of two convolutional layers with a kernel

size of 3 and a skip connection. The downsampling layer is

a convolutional layer with a stride of 2 and a kernel size of

4. With each downsampling operation, the number of channels

is doubled to maintain the width of the feature maps. Follow-

ing the convolutional blocks is a simple Transformer network

employed for sequence modeling of the latent representation,

capable of capturing long-term dependencies in the audio signal

crucial for compression quality. The output of the encoder is a

latent representation utilized for subsequent quantization and

decoding processes.

The decoder segment, likewise stream-based, employs a 1-D

transposed convolutional network structure and is responsible

for reconstructing the encoder’s output latent representation into

a time-domain signal. The decoder receives the compressed

latent representation from the encoder as input, utilizing trans-

posed convolutional layers. The stride of the transposed con-

volutional layers matches that of the encoder but in reverse

order. This allows the decoder to progressively recover high-

resolution audio signals from low-resolution latent represen-

tations. The decoder outputs the final mono or stereo audio

signal ŷ, with separate processing for left and right channels

in the case of stereo audio. The design of the decoder enables

it to effectively recover high-quality audio signals from the

encoder’s compressed representations.

C. Precoder Optimization

After having the encoded information by the semantic en-

coder, we utilize rate splitting for multiuser VR streaming sys-

tems. Due to the fractional property of the multiratio terms γc,k
and γp,k,Rc,k andRp,k are still nonconcave functions ofwk. To

tackle such nonconvexity, quadratic transform [40, Theorem 1]

and convex approximation approach are applied. We propose to

Algorithm 1: Proposed Iterative Algorithm for Handling (13).

Require: h,K,M, σ2.

Ensure: W
∗.

1: Initialize h,K,M, σ2,W(0).

2: while not converged do

3: Update z
∗
c,m←

|hH
k w

(m)
c |

∑
K
j=1 |h

H
k
w

(m)
p,j

|2+σ2
.

4: Update z
∗
p,m←

|hH
k w

(m)
p,k

|
∑

K
j=1,j 6=k

|hH
k
w

(m)
p,j

|2+σ2
.

5: W
(m+1)← Update W

(m) by solving problem (17).

6: m←m+ 1.

7: end while

8: return W
∗ =W

(m+1).

seek a linear surrogate function for the convex quadratic terms

Rc,k and Rp,k by employing the first-order Taylor expansion

of |hH
k wp,k|

2 at the current point w
(m)
p,k which is a global lower

bound

|hH
k wp,k|

2 = (hH
k wp,k)

H(hH
k wp,k)

≥ 2ℜ
{

(w
(m)
p,k )Hhkh

H
k wp,k

}

− ((w
(m)
p,k )Hhkh

H
k w

(m)
p,k ).

(14)

Therefore, plugging the result of (14) into (12), a surrogate

function for uk is constructed as

uk ≥ ũk
(m) , µc,kR

(m)
c,k + µp,kR

(m)
p,k

= µc,klog2(1 + γ
(m)
c,k ) + µp,klog2(1 + γ

(m)
p,k )

= µc,klog2

(

1 + z
∗
c |h

H
k wc| − z

∗2
c σ2

− z
∗2
c Re

(

K
∑

j=1

Tr((hkh
H
k w

(m)
p,j )H(2wp,j −w

(m)
p,j ))

))

+ µp,klog2

(

1 + z
∗
p|h

H
k wp| − z

∗2
p σ2

− z
∗2
p Re

(

K
∑

j=1,j 6=k

Tr((hkh
H
k w

(m)
p,j )H(2wp,j−w

(m)
p,j ))

))

(15)

where z
∗
c,m and z

∗
p,m are the auxiliary variables, which

can be, respectively, updated by z
∗
c,m = (|hH

k w
(m)
c |/

∑K

j=1 |h
H
k w

(m)
p,j |

2 + σ2) and z
∗
p,m = (|hH

k w
(m)
p,k |/

∑K

j=1,j 6=k |

h
H
k w

(m)
p,j |

2 + σ2). The surrogate function ũk
(m)(W) is

globally concave with respect to W which permits a premium

solution for (13a). The optimization problems can be

transformed into

max
{wk}K

k=1

K
∑

k=1

ũk
(m) (16a)

s.t. (13b), (13c), (13d). (16b)

The proposed algorithm is shown in Algorithm 1.
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Fig. 4. Sum utility rate versus maximum transmission power Pmax (dBm)
with K = 4,M = 8 on RSMA, ZF, and NOMA

V. NUMERICAL RESULTS

A. Experiment Setup

1) Dataset: The model is trained on 24-kHz monophonic

data across various domains, including speech, noisy speech,

and music, whereas the fullband stereo model is exclusively

trained on 48-kHz music. Speech segments from DNS chal-

lenge 4 and FSD50K are utilized for speech training. For music

training and evaluation, the Jamendo dataset is employed, sup-

plemented by an in-house proprietary music dataset for further

evaluation. Dataset splits are established as follows: 90% of

clean segments from DNS challenge 4 are allocated for training,

with 5% each for validation and testing. A similar approach is

applied to FSD50K, utilizing the development set for training

and dividing the evaluation set for validation and testing pur-

poses.

2) Parameter Setting: We train all models for ten epochs,

with one epoch consisting of more than 2000 updates using

the Adam optimizer with a batch size of 32 examples, each of

1-s duration. The learning rate is set to 2× 10−4, with β1 = 0.5
and β2 = 0.9. All models are trained on four GeForce RTX

4080 GPUs. We utilize the balancer introduced before, with

weights λt = 0.5, λf = 1, and λw = 1 for the 24-kHz models,

and λt = 0.5, λf = 1, and λw = 2 for the 48-kHz models.

B. Results

We start with the results for lightweight encodec model with

a bandwidth of 6 kbps, ensuring little loss of the compression

performance. The results of communication optimizing sum

utility rate and semantic lightweight encodec model are shown

as follows.

In Fig. 4, the performance comparison clearly demonstrates

that RSMA consistently outperforms the baseline methods ZF

and NOMA in terms of sum utility rate across various levels

of maximum transmission power. RSMA achieves significant

Fig. 5. Sum utility rate versus iteration with K = 4, M = 4, M = 6,
M = 8, M = 10.

rate gains due to its flexible power and resource allocation

strategies, effectively leveraging transmission power to enhance

overall transmission rates. This flexibility also extends to the

design of semantic information extraction schemes, reducing

computational complexity while maintaining robustness and

adaptability under varying transmission conditions. Addition-

ally, RSMA’s integrated encoding and decoding strategies im-

prove spectral efficiency without increasing system complexity,

making it a promising technology for high-efficiency semantic

communication in future 6G networks.

Fig. 5 illustrates that the proposed algorithm achieves con-

vergence within a few iterations. Specifically, the algorithm

generally begins to converge by the fifth iteration and fully

converges within ten iterations under the given parameters.

Additionally, the figure shows that increasing the number of

transmitting antennas M leads to an enhancement in commu-

nication performance, as evidenced by the higher sum utility

rates achieved with larger values of M . This indicates that the

algorithm not only converges efficiently but also scales well

with the number of antennas, offering improved performance

and making it suitable for systems requiring rapid convergence

and high efficiency.

Fig. 6 demonstrates the sum utility rate achieved by the

proposed algorithm under varying transmission power budgets.

As observed, increasing the maximum transmission power Pmax

results in a corresponding improvement in the sum utility rate

for all configurations of transmitting antennas M . Specifically,

higher transmission power consistently enhances communica-

tion performance, with the sum utility rate rising steadily as

Pmax increases from 15 to 35 dBm. Additionally, the figure

indicates that configurations with a greater number of transmit-

ting antennas (i.e., M = 6, M = 8, and M = 10) consistently

outperform those with fewer antennas (i.e., M = 4), highlight-

ing the benefits of utilizing more antennas in achieving higher

utility rates.
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Fig. 6. Sum utility rate versus maximum transmission power Pmax (dBm)
with K = 4, M = 4, M = 6, M = 8, M = 10.

Fig. 7. Training process of LG versus iteration on training set.

Fig. 7 depicts the loss function LG throughout the train-

ing procedure utilizing multiple NVIDIA GeForce RTX 4080

GPUs. Following approximately 20 000 iterations, the loss

function LG ultimately achieves convergence, indicating the

effectiveness of the training strategy. To expedite the conver-

gence process, we incorporate a warm-up initialization at the

commencement of each epoch, which serves to stabilize the ini-

tial training iterations and facilitate a smoother descent toward

the optimal solution. This approach ensures that the model is

well conditioned for further optimization, ultimately leading to

improved performance.

Figs. 8 and 9 display the average mean squared error (MSE)

and mean absolute error (MAE) losses across mel-frequency

and time sequences derived from 100 h of data sourced from the

FSD50k dataset at varying bandwidth sampling rates. Opting

for a smaller bandwidth notably enhances the compression ef-

ficacy of the model, albeit at the expense of diminished quality.

Fig. 8. MSE and MAE of mel-frequency on different sampling bandwidths.

Fig. 9. MSE and MAE of time sequence on different sampling bandwidths.

Specifically, at a bandwidth of 1.5 kbps, the model achieves a

compression ratio of 5%, yet at the cost of noticeable audio

information loss, resulting in perceptible differences between

the decoded and original audio. Conversely, at a bandwidth

of 6 kbps, the compression ratio reaches 40%, rendering the

compressed audio nearly indistinguishable from the original in

human auditory assessments. A bandwidth of 12 kbps facil-

itates lossless transmission but fails to effectively reduce file

size. These findings underscore the merits of semantic commu-

nication, which delivers robust compression capabilities with

minimal loss of music or speech information.

Fig. 10 comprehensively showcases the robust performance

of the semantic communication model across three distinct

datasets, each comprising 50 h of audio data. Specifically, the

MSE and MAE metrics for DNS challenge 4, FSD50K, and

Jamendo are presented. Among these, DNS challenge 4 exhibits

a MSE and MAE of 0.08, indicating a consistent yet slightly

higher error rate. The FSD50K dataset, on the other hand,

achieves a lower MSE of 0.07 and MAE of 0.06, suggesting
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Fig. 10. MSE and MAE of mel-frequency on different datasets.

improved accuracy. Notably, the Jamendo dataset stands out

with the lowest MSE of 0.05 and MAE of 0.04, demonstrat-

ing the superior performance of the semantic communication

model on this particular dataset. These findings underscore the

generalizability and adaptability of the proposed model across

diverse audio datasets.

In summary, to transmit public information (music), a band-

width of 12 kbps is employed for compression to uphold the

quality standards of the public content. For private information

(speech), a bandwidth of 6 kbps is utilized to optimize compres-

sion efficiency while preserving fundamental speech quality.

Users with lower quality demands for speech information may

opt for compression at 3 kbps or even 1.5-kbps bandwidth.

VI. CONCLUSION

In conclusion, this study has successfully developed and in-

troduced a cutting-edge framework that significantly enhances

the VR music live streaming experience by integrating semantic

communication with rate splitting. This innovative approach

efficiently transmits music and speech components, utilizing a

semantic encoder to distinguish between common and private

messages for users, based on their unique preferences. Key

achievements of our research include the creation of a frame-

work that uniquely combines semantic communication and rate

splitting for VR applications, the effective use of semantic

communication to process and transmit streamlined semantic

information, and the strategic implementation of rate splitting

to optimize the delivery of music and speech. These contribu-

tions collectively address critical challenges in streaming high-

quality VR content and pave the way for more immersive and

enjoyable live streaming experiences.

Looking ahead, there are numerous exciting directions for

future research. One potential area is to further explore the inte-

gration of advanced semantic analysis techniques to enable even

more personalized and context-aware VR music live streaming

experiences. Additionally, we plan to investigate the application

of our framework to other VR scenarios, such as immersive

concerts, virtual events, and educational simulations. Moreover,

with the increasing popularity of 5G and beyond networks, we

believe that our approach can play a crucial role in enabling

real-time, high-quality VR content streaming, opening up new

possibilities for more immersive and enjoyable live streaming

experiences. We are excited about the prospects of our research

and look forward to exploring these future directions.
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